Adaptation-Guided Case Base Maintenance
نویسندگان
چکیده
In case-based reasoning (CBR), problems are solved by retrieving prior cases and adapting their solutions to fit; learning occurs as new cases are stored. Controlling the growth of the case base is a fundamental problem, and research on case-base maintenance has developed methods for compacting case bases while maintaining system competence, primarily by competencebased deletion strategies assuming static case adaptation knowledge. This paper proposes adaptation-guided case-base maintenance (AGCBM), a case-base maintenance approach exploiting the ability to dynamically generate new adaptation knowledge from cases. In AGCBM, case retention decisions are based both on cases’ value as base cases for solving problems and on their value for generating new adaptation rules. The paper illustrates the method for numerical prediction tasks (case-based regression) in which adaptation rules are generated automatically using the case difference heuristic. In comparisons of AGCBM to five alternative methods in four domains, for varying case base densities, AGCBM outperformed the alternatives in all domains, with greatest benefit at high compression.
منابع مشابه
Feature-Centric Approaches to Case-Base Maintenance
Flexible case-base maintenance (FCBM) and adaptation-guided feature deletion (AGFD) extend case-base maintenance (CBM) research. FBCM examines superficial properties of cases and their features such as the size of a case or the rarity of a feature. Then it deletes either entire cases, or components of cases, measuring competence by the number of problems solved and measuring size by the number ...
متن کاملRemembering Why to Remember: Performance-Guided Case-Base Maintenance
An important focus of recent CBR research is on how to develop strategies for achieving compact, competent case-bases, as a way to improve the performance of CBR systems. However, compactness and competence are not always good predictors of performance, especially when problem distributions are non-uniform. Consequently, this paper argues for developing methods that tie case-base maintenance mo...
متن کاملAn Ensemble Approach to Adaptation-Guided Retrieval
Instance-based learning methods predict the solution of a case from the solutions of similar cases. However, solutions can be generated from less similar cases as well, provided appropriate “case adaptation” rules are available to adjust the prior solutions to account for dissimilarities. In fact, case-based reasoning research on adaptation-guided retrieval (AGR) shows that it may be beneficial...
متن کاملA Fuzzy-Rough Approach for Case Base Maintenance
This paper proposes a fuzzy-rough method of maintaining CaseBased Reasoning (CBR) systems. The methodology is mainly based on the idea that a large case library can be transformed to a small case library together with a group of adaptation rules, which take the form of fuzzy rules generated by the rough set technique. In paper [1], we have proposed a methodology for case base maintenance which ...
متن کاملCompetence Guided Model for Casebase Maintenance
A competence guided casebase maintenance algorithm retains a case in the casebase if it is useful to solve many problems and ensures that the casebase is highly competent. In this paper, we address the compositional adaptation process (of which single case adaptation is a special case) during casebase maintenance by proposing a case competence model for which we propose a measure called retenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014